更多>>精华博文推荐
更多>>人气最旺专家

白银雪

领域:商都网

介绍:现汇报如下一、自觉加强理论修养,不断提高思想素质做为一名共产党员,政治合格、素质过硬至关重要。...

桧丸

领域:红网

介绍:(三)积极上进,继续学习深造。环亚ag,环亚ag,环亚ag,环亚ag,环亚ag,环亚ag

环亚娱乐ag88登录
本站新公告环亚ag,环亚ag,环亚ag,环亚ag,环亚ag,环亚ag
he8 | 2019-01-16 | 阅读(346) | 评论(295)
③水电检查卫生间、厨房和阳台的给排水系统,是否有乱接乱改、是否有跟施工图纸的设计不一。【阅读全文】
环亚ag,环亚ag,环亚ag,环亚ag,环亚ag,环亚ag
ofb | 2019-01-16 | 阅读(739) | 评论(327)
预计“十一·五完成后,我国将有具有自主知识产权的国产大产能高得率制浆关键设备可进入市场[91。【阅读全文】
uqy | 2019-01-16 | 阅读(843) | 评论(137)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
myv | 2019-01-16 | 阅读(562) | 评论(560)
由此可见,如采用轻量化材料,将对汽车节能具有重要的意义。【阅读全文】
jvb | 2019-01-16 | 阅读(630) | 评论(741)
中国共产党领导的敌后战场的抗战取得了怎样的战绩,抗日根据地是如何壮大起来的?今天就让我们一起学习第21课:敌后战场的抗战。【阅读全文】
6bs | 2019-01-15 | 阅读(508) | 评论(603)
由于用户账户关联用户信用信息,仅当有法律明文规定、司法裁定或经阿里巴巴同意,并符合阿里巴巴中国站规则规定的账户转让流程的情况下,用户可进行账户的转让。【阅读全文】
e6z | 2019-01-15 | 阅读(417) | 评论(346)
强制性的行政命令、指示、规定等。【阅读全文】
y7e | 2019-01-15 | 阅读(610) | 评论(200)
PAGE第一章导数及其应用单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则f′(x0)等于(  ).A.B.C.1D.-12.等于(  ).A.-2ln2B.2ln2C.-ln2D.3.若对于任意x,有f′(x)=4x3,f(1)=3,则此函数的解析式为(  ).A.f(x)=x4-1B.f(x)=x4-2C.f(x)=x4+1D.f(x)=x4+24.抛物线在点Q(2,1)处的切线方程为(  ).A.-x+y+1=0B.x+y-3=0C.x-y+1=0D.x+y-1=05.函数f(x)=x3-2x+3的图象在x=1处的切线与圆x2+y2=8的位置关系是(  ).A.相切B.相交且过圆心C.相交但不过圆心D.相离6.若(2x-3x2)dx=0,则k等于(  ).A.0B.1C.0或1D.7.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(  ).A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>68.函数f(x)的图象如图所示,下列数值排序正确的是(  ).A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)9.已知点P在曲线上,α为曲线在点P处的切线的倾斜角,则α的取值范围是(  ).A.B.C.D.10.若曲线在点(a,)处的切线与两个坐标轴围成的三角形的面积为18,则a等于(  ).A.64B.32C.16D.8二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.经过点(2,0)且与曲线相切的直线方程为____________.12.三次函数f(x),当x=1时有极大值4,当x=3时有极小值0,且函数图象过原点,则f(x)=__________.13.在区间上,函数f(x)=x2+px+q与在同一点处取得相同的极小值,那么函数f(x)在上的最大值为__________.14.函数y=x2(x>0)的图象在点(ak,)处的切线与x轴交点的横坐标为ak+1,其中k∈N+,若a1=16,则a1+a3+a5的值是________.15.下列四个命题中正确的命题的个数为________.①若,则f′(0)=0;②若函数f(x)=2x2+1图象上与点(1,3)邻近的一点为(1+Δx,3+Δy),则;③加速度是动点位移函数s(t)对时间t的导数;④曲线y=x3在(0,0)处没有切线.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)求由曲线y=2x-x2,y=2x2-4x所围成的封闭图形的面积.17.(15分)已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值.(1)求a,b的值及函数f(x)的单调区间;(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围. 参考答案1.答案:D 原等式可化为=-f′(x0)=1,因此f′(x0)=-答案:D =ln4-ln2=答案:D f′(x)=4x3,∴f(x)=x4+k.又f(1)=3,∴k=2,∴f(x)=x4+答案:A ,∴,又切线过点Q(2,1),∴切线方程为y-1=x-2,即-x+y-1=答案:C 切线方程为x-y+1=0,圆心到直线的距离为,所以直线与圆相交但不过圆心.6.答案:C 因为(x2-x3)′=2x-3x2,所以(2x-3x2)dx=(x2-x3)=k2-k3=0.所以k=0或k=答案:D f′(x)=3x2+2ax+a+6,因为f(x)既有极大值又有极小值,所以Δ=4a2-4×3×(a即a2-3a-18>0.解得a>6或a8.答案:B f′(2),f′(3)是x分别为2,3时对应图象上点的切线的斜率,f(3)-f(2)=,∴f(3)-f(2)是图象上x为2和3对应两点连线的斜率,故选答案:D ∵,∴-1≤y′<0,即曲线在点P处的切线的斜率-1≤k<0,∴-1≤tanα<0,又α[0,π),∴π≤α<π.10.答案:A ,∴切线斜率,切线方程是(x-a),令x=0,得,令【阅读全文】
环亚ag,环亚ag,环亚ag,环亚ag,环亚ag,环亚ag
lx7 | 2019-01-15 | 阅读(280) | 评论(117)
这里我讲两个小的比方例如在上班期间,某柜组的员工围在一起聊天扯闲话、不坚守自已的工作岗位,防损员就应该及时指出和纠正;再例如员工上班时不戴工号牌、发现货柜物品不整洁、填补货物不饱满、防损员都要及时指出并要求更正。【阅读全文】
ast | 2019-01-14 | 阅读(426) | 评论(565)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
pan | 2019-01-14 | 阅读(129) | 评论(582)
;;a)病情趋向稳定的重症患者;b)病情不稳定或随时可能发生变化的患者;c)手术后或者治疗期间需要严格卧床的患者;d)自理能力重度依赖的患者。【阅读全文】
6gc | 2019-01-14 | 阅读(517) | 评论(754)
第2课 古代手工业的进步课程标准列举古代中国手工业发展的基本史实,认识古代中国手工业发展的特征。【阅读全文】
jam | 2019-01-14 | 阅读(675) | 评论(840)
我的总结1、许多人不重视小科,上不认真听讲;2、上发呆,讲小话,做其他事情的人很多;3、每次要下地理时,何秋江马上把板凳搭【阅读全文】
5tk | 2019-01-13 | 阅读(558) | 评论(864)
基本格式1、标题2、正文开头:概述情况,总体评价;提纲挈领,总括全文。【阅读全文】
z5z | 2019-01-13 | 阅读(10) | 评论(4)
我的总结1、许多人不重视小科,上不认真听讲;2、上发呆,讲小话,做其他事情的人很多;3、每次要下地理时,何秋江马上把板凳搭【阅读全文】
共5页

友情链接,当前时间:2019-01-16

w66利来国际 利来娱乐w66 w66. 利来国际官网 利来娱乐备用
利来国际最给利的老牌 利来娱乐ag旗舰厅 利来国际真人娱乐 利来国际娱乐官方网站 利来娱乐帐户
利来国际最老牌 利来国际娱乐官方 利来老牌 利来w66 w66.com
利来ag 利来国际w66备用 利来国际w66手机版 利来娱乐网址 利来
姜堰市| 抚州市| 清水河县| 普安县| 广州市| 宁明县| 江口县| 曲阜市| 祁东县| 宕昌县| 皮山县| 德保县| 玛曲县| 定西市| 正镶白旗| 张家口市| 嘉禾县| 特克斯县| 临沭县| 子长县| 什邡市| 民权县| 临澧县| 会宁县| 隆安县| 冷水江市| 余姚市| 浪卡子县| 黄浦区| 南华县| 汉沽区| 凤庆县| 雷山县| 修武县| 会昌县| 张家港市| 闽清县| 东台市| 灵丘县| 金乡县| 大厂| http://m.62594048.cn http://m.47518330.cn http://m.15099223.cn http://m.75762250.cn http://m.77842206.cn http://m.38175520.cn